发布时间:2022-09-04 08:50:01源自:https://www.it-th.com作者 :it谈话网阅读(307)
有什么用:帮助运营童鞋解决工作中常遇到的数据问题,轻松玩转数据,真正用数据驱动运营。
阅读时长:可学习的知识点较多,建议学习时长为15-30分钟!
文章内容:
在这个数据驱动运营的时代,数据不仅是数据工程师和分析师的事情,在工作中也要求运营从业者有一定的数据分析能力,更有人说“数据分析能力是未来运营的分水岭”。从我自身角度出发,真心觉得数据能更好推动运营策略和工作的开展。
但运营童鞋多是数据小白,没有编程和技术基础,那我们该怎么分析并用好数据呢?今天从运营常见的数据问题出发,希望让大家能快速地入门数据分析,让数据更好地为工作服务,别白白浪费数据的价值。
这是运营小伙伴们最头痛的问题,不知道该关注、分析哪些数据,就算拿到数据后,也不知道到底从哪些方面去分析这些运营数据。给小伙伴们整理一些运营常见的数据指标,也总结了一些比较适用的分析角度,希望有用~
比较多,请耐心看完或收藏。
访问:PV、UV、IP(最常见)跳出率、平均访问时长、平均访问页数等使用设备、操作系统、浏览器、地域分布等访问行为注册:注册人数、注册走势、累计注册人数、达成率等渠道&推广:来源渠道分布、总消费、展示量、点击率、点击率、平均点击价格、转化率、转化成本、ROI等活跃/登录:DAU、WAU、MAU、活跃率、登录人数等留存:次日留存率、周留存率、月留存率等,还有按渠道去分析留存率流失:流失数据容易被遗忘,包括流失率,流失人数、每日平均流失人数等付费:付费人数、付费转化率、单笔订单平均金额等,更多看订单数据其他:每日评论人数、收藏人数、分享人数等头像:一方面分析用户属性:关注年龄、性别、学历、职业、地域、婚否、收入、兴趣等另一方面分析用户行为:登录次数、活跃率、累计消费金额、最近一次购买、购买次数、复购率等付费人数、新增付费人数总金额、每日订单数、平均每日成交额、客单价付费金额、付费毛利、付费利润、复购率、ARPU、付费各个路径转化等PV、UVUGC、PGC文章数、关注数、阅读数、互动数(评论、点赞等)、传播数(转发、分享等)活动页PV、UV新增人数、参与人数、登录人数、转化人数转化成交金额、ARPU优惠券发放/使用人数、营销成本、营销转化率、ROI分享人数、分享次数等。咨询人数、咨询转化率、退货率、退款率、好评率、差评率、投诉率等 各渠道下载量、激活数、新增注册数、获客成本启动次数、启动人数、停留时长push到达率、打开率等,其他参考以上数据。数据分析有各种高大上的分析原则,比如AARRR模型、5W2H等,但是运营毕竟不是专业的数据分析师,主要能用好这些原则就够了~
对比:分成横向和纵向对比,比如纵向的同环比分析,横向的不同产品、不同渠道的对比等走势(变化):指标随时间的变动,表现为增幅(同比、环比等)分布:这个好理解,比如说用户不同年龄段的分类、不同职业的分布、不同地域分布等细分:从多层级去了解数据,比如分析全国不同省份不同城市的具体订单数据,从全国—省份—城市一一下钻深入分析转化:主要体现在结果的最终转化、各个路径的转化,比如通过整个注册流程的转化分析来优化细节预测:根据现有情况,估计下个分析时段的指标值。举个实际例子吧~
某水果O2O平台想确认未来一周各品类应准备的数量,若没有数据的支撑,那只能由人工结合经验得到一个大致结论,一般误差比较大导致水果浪费较多。该怎么解决这个问题呢?
当有了往常数据,数据走势有了一定的规律,可通过数据预测来得到一个比较合理、比较准确的数值,再通过不断预测—验证得到一个最佳方案,保证水果备货刚刚好,减少浪费,节约成本,这就是数据的价值。
(绿色:日常数据走势黄色:未来10天数据预测)
分析师身负多个部门的数据分析工作,有时从提需求到最终拿到数据,2、3天都过去了,且不说分析结果是否是你想要的,就时效性而言,这份数据结果的意义也减弱了,如何变身自己的“专属分析师”呢~
数据分析的整个过程:
确定指标—数据收集—数据整合—数据处理/建模—数据分析—数据呈现(可视化)—报表汇报
如何不依赖分析师,自己搞定数据分析呢?
学习一些数据分析理论。(数据思维)了解、熟悉业务,这点很重要。(业务思路)学习一些数据分析工具。(工具辅助)以我的个人经验来看,真正把握这些真真是够了~毕竟我们不是专业的数据分析师,能做好业务分析足以!
没有哪个老板喜欢杂乱的表格数据,颜值才是王道啊。简单地说,就是数据如何可视化,让数据直观、明了。
比如,用户性别的占比分析只有“性别”一个维度,用饼/环图展示,男女比例非常直观,比如下图明显是男性用户偏多,若用户群体符合初衷和产品特征,那运营方式不妨可以尝试一些“可爱风”,也许这样更能吸引男性用户。营销活动也可以考虑选择一些科技类产品作为奖品,也许更能促进男性用户的购买力,达到活动目的。
(单维度:用户性别分析)
同环比太常见了,几乎什么数据都要跟之前有个对比,这样才能更体现目前数据的“运营价值”。
最常见就是PV、UV的同环比了,比如UV环比下降了,是正常还是不正常。正常是因为UV可能存在一定规律,可能周五的UV就比周四低,那数据属于正常。若没有固定规律,那有异常波动一定要寻找背后的原因,尽快处理问题,以防再犯。
(单维度:PV环比和UV环比分开)
(双维度:PV环比和UV环比放一起)
(双折线图)
(柱状图)
用户地域分析也是非常重要的,这可能决定了公司业务会在哪些区域重点投入、重点销售。这也是公司广告需重点投放哪些区域的数据指导,对于每年竞价投入几百万、几千万的公司,正确的用户地域分析可节省很多不必要的投入,给公司省钱老板可乐意了。
(行政地图)
(单项KPI完成进度)
(各项运营指标完成进度)
(用户活跃情况变化)
(用户职位分布)
(用户咨询转化率)
之前在一家电商公司工作,每天网站流量都不低,但最终的支付转化率始终不高,从流量—注册转化还可以,从注册—浏览转化也还可以,但就是浏览—支付转化不高。
通过不断找原因,通过用户调研和数据分析(埋点)发现大部分用户都到了支付页,但支付入口在移动端不太明显导致很多用户弃买,这当然要改,优化后整体转化率确实提高了。通过数据发现问题—找原因—优化—通过数据验证可行性,这真的是一个良性循环。
所以每个数据图表都有适合的使用场景,用好各种图表很重要,因为它直接影响到数据的直观和美观程度。
做了那么多的数据工作,最终无非是为了从数据中去发现问题,不断优化运营策略。不论数据是上升了还是下降了,肯定有其变化的原因,这里以用户数据变化为例了解一下快速找到问题的思路~
Ps:这只是个人结合工作得到一些经验,不一定非常准备,大家可结合自己的网站和产品去分析~
以上3种都不是,那就下钻从渠道入手,看哪个渠道数据有异常,再结合具体问题进行分析。(Ps:有时候从渠道发现异常的,所以这个流程的顺序不是绝对的)
以上几种都不是,实在找不到原因,只能跟老板说:“原因未明,将持续观察趋势,以确认其偶然性”。哈哈,开玩笑哈~
有些问题显而易见,有些问题排查需要一些时间,看数据最终的意义还是要结合实践。看数据—发现问题—解决问题—再看数据—问题解决,或者看数据—发现增长—找到原因—继续应用,总之:取其精华去其糟粕,你懂得~
总之,数据对运营来说非常重要,分析好相关数据,真正发挥数据的价值,用数据来指导运营工作,真正实现数据驱动运营,不要让其成为一句空话哈!
-End-
欢迎分享转载→ 作为数据小白,如何发挥数据运营真正的价值?